Applying Finite Elements Practices to Predict Manufacturing Distortions in a Sintered 3D printed MoldJet® Metal Part

Omri Yannay / Ansys

Ohad Dolev, Yitzhak Saydo / Tritone.

© Copyright 2023 ANSYS, Inc.

Motivation

• Simulation Capabilities

$$\eta = AT \exp\left(\frac{B}{T}\right) \cdot \left(\frac{g}{g_0}\right)^3$$
 • Theory Background

Calibration

- Sintering Simulation
- Distorsion Compensation Analysis
- Verification Sintering <u>Simulation</u> of Distorted Part
- Validation- Sintering <u>Printed</u>
 Distorted Part

Background

Tritone's 3D manufacturing **MoldJet**[®] technology process, is a sequential manufacturing process resulting with remarkable green parts dimensions and mechanical properties.

Following demolding and curing stages, the **green parts undergo a sintering process** at a temperature just below their melting point and get solidified while their density is also increased to meet standards requirements.

While being sintered, the green bodies initial proportions are changed and can be reduced up to 15%. This dimensional change is affected by parameters such as sintering process profile, part geometry, material properties, part sintering orientation, and more.

MoldJet[®] Process Workflow

Tool Steel H13

Finite Element Analysis (FEA) was applied using **Ansys Mechanical** and **Ansys Additive Suite**. Leveraging the FEA insights, allows understanding the **preferred parameters** for the **sintering stage**, as well as designing an **intentionally deformed green body part** to **meet** the **desired requirements after sintering**.

Case Study:

• Motivation

• Simulation Capabilities

• Theory Background

• Calibration

- Sintering Simulation
- Distorsion Compensation Analysis
- Verification Sintering <u>Simulation</u> of Distorted Part
- Validation- Sintering <u>Printed</u>
 Distorted Part

New Additive Add-ons native in Ansys Mechanical

Ansys Learning Hub Additive Add-ons Short Tutorials

Rocket motor temperature and deformation

2023 ANSYS, Inc.

\nsys

ADDITIVE SUITE

Applications – Air Filter Distortion Compensation

Original Geometry

ADDITIVE SUITE

Compensated Geometry

©2023 ANSYS, Inc.

Courtesy of Croft Filters

Ansys

Support Removal – Sequence Matters

- Asymmetric deformation observed after support removal is accurately captured by simulation
- Manufacturers should take support removal order into consideration when working with AM

ADDITIVE SUITE

X-Location

©2023 ANSYS, Inc.

Z-Deflection

\nsys

Additional Process Simulation

©2023 ANSYS, Inc.

Insys

ADDITIVE SUITE

Case Study:

• Motivation

• Simulation Capabilities

 $\eta = AT \exp\left(\frac{B}{T}\right) \cdot \left(\frac{g}{g_0}\right)^3$ • Theory Background

Calibration

- Sintering Simulation
- Distorsion Compensation Analysis
- Verification Sintering <u>Simulation</u> of Distorted Part
- Validation- Sintering <u>Printed</u>
 Distorted Part

Calibration Challenge

Achieve similar dimensions in sintering simulation compared to manufactured

Inputs:

Geomtery

- Initial Dimension

Sintering Process:

- Thermal cycle
- Gravity Direction (Sintering orientation)
- Base plate frictional force

Material

- Sintering temperature
- Powder diameter
- Relative density (sintered/initial)

Outputs:

Final dimensions measured by: (micrometer/3D scan/dilatometer)

Calibration Objectives

- Dimensional **shrinkage**
- Viscous creep behavior leading to
 - warpage or bending of the part under

gravity

• Grain growth effects (optional,

depending on the material)

 $f(\alpha,\beta,\gamma...)$

Advanced Calibration Methods

Sintering Calibration Guide (ansys.com)

Tutorial: Chapter 5: Workbench Additive Sintering Simulation - Printed Bridge (ansys.com)

Available sintering models in Ansys Additive Suite

Table 3.2: Sintering material model comparisons

Author(s)	Uniaxial Viscosity Model	Sintering Stress Model	Grain-Growth Model	Viscous Moduli Model	
Paudel et al. [1]	Grain-Size Corrected Arrhenius $\eta = AT \exp\left(\frac{B}{T}\right) \cdot \left(\frac{g}{g_0}\right)^3$	Olevsky $\sigma_s = \frac{C\rho^2}{d_0}$	Parabolic $\dot{g} = \frac{1}{g} D \exp(-\frac{Q_g}{RT})$	Riedel	Dilatometer Data
Song et al. [1]	Grain-Size Corrected Arrhenius $\eta = AT \exp\left(\frac{B}{T}\right) \cdot \left(\frac{g}{g_0}\right)^3$	Olevsky $\sigma_s = \frac{C\rho^2}{d_0}$	Parabolic $\dot{g} = \frac{1}{g} D \exp(-\frac{Q_g}{RT})$	Riedel	Number of stages
Zhang et al. [4]	Arrhenius $\eta = A \exp\left(\frac{B}{T}\right)$	Grain-Size Corrected Olevsky $\sigma_s = \frac{C\rho^2}{g}$	Parabolic $\dot{g} = \frac{1}{g} D \exp(-\frac{Q_g}{RT})$	SOVS	

Calibrating new material

\nsys

ADDITIVE SUITE

Song, J., Gelin, J. C., Barriere, T., & Liu, B. (n.d.). Experiments and numerical modelling of solid state sintering for 316L stainless steel components. 800. <u>https://doi.org/10.1016/j.jmatprotec.2006.04.111</u>
 Kerbart, G., Manière, C., Harnois, C., & Marinel, S. (n.d.). Predicting final stage sintering grain growth affected by porosity. <u>https://arxiv.org/abs/2011.12402</u>
 Paudel, B. J, Conover, D., Lee, J., & To, A. C. A computational framework for modeling distortion during sintering of binder jet printed parts. *Journal of Micromechanics and Molecular Physics*. 6.4 (2021): 95-102.
 Anang, R. (2005). Numerical Simulation of Solid-State Sintering of Metal Powder Compact Dominated by Grain Boundary Diffusion. The Pennsylvania State University. <u>https://etda.libraries.psu.edu/files/final_submissions/5423</u>

2023 ANSYS, Inc

Case Study:

• Motivation

• Simulation Capabilities

- Theory Background
- Calibration

- Sintering Simulation
- Distorsion Compensation Analysis
- Verification Sintering <u>Simulation</u> of Distorted Part
- Validation- Sintering <u>Printed</u>
 Distorted Part

Ansys Mechanical Native Calibration Wizard (Beta)

Ansys / ACT

Temperature [C]

No data to display

17

\nsys

ADDITIVE SUITE

Tritone's 316L SS Material and Process Data

Material datasheet

316L Stainless Steel

Composition - According to ASTM A276-06

Composition	Amount	600
Carbon	0.03%	500
Silicon	1.0%	ie 400
Manganese	2.0%	d santi 200
Phosphorous	0.045%	en alter alt
Sulfur	0.03%	3.00
Chromium	16.0-18.0%	0
Nickel	10.0-14.0%	Strain [%]
Molybdenum	4.08%	The second second
Iron	Bal.	

Typical Mechanical Properties

Typical Mechanical Properties

	Standard	tandard Tritone		Wrought ASTM A276
Ultimate Tensile Strength	ASTM E8	591 MPa	520 MPa	485 MPa
0.2% Yield Strength	ASTM E8	213 MPa	175 MPa	170 MPa
Elongation at Break	ASTM E8	>60%	50%	40%
Hardness	ASTM E18	67 HRB	67 HRB	-
Relative Density	ASTM B962	>99%	95%	100%

De-binding & Sintering Profile 316L

Time /min

Mean Powder Diameter	μm	12
Green Density Ratio (compared to sintered)	-	0.64
Sintering Activation Temperature	°C	900

Tritone Industrial Additive Manufacturing

Calibration Beam Specimen

		Initial	Sintered
Thickness	mm	6.35	5.58
Width	mm	12.7	11.2
Length	mm	35	30.84

Uncalibrated Sintering Simulation

Model Calibration with OptiSlang

Material model input parameters

a second second second second second					Outline of	f All Parameters						
etails of Sinter Material	······································					A	В	с	D	-	D	
Geometry		-			1	ID	Parameter Name	Value	Unit	1 🗖	Static Structural	
Scoping Method	Geometry Selection	-			2	Input Parameters						
Geometry	1 Body				3	Calibrated 316L (D1)				2 😒	Engineering Data	· · ·
Sintering Model		_			4	Lp P6	Sinter Material Sintering Stress Pre-Factor	0.000696	N mm^-1	3 🧯	Geometry	 Image: A second s
Material	User Defined				5	φ F7	Sinter Material Uniaxial Viscosity Prev actor	1.1212-00	MPd S	4 📾	Model	1
Material Label	Tritone316L	. F	inal simula	ted	6	цр P8	Energy	1.6712E+08				
Initial State Data		•			7	🗘 Р9	Sinter Material Grain Growth Kinetics Pre -Factor	9.8E-07		5 🕥	👢 Setup	× 🔺
Green Density	0.64		limensions	as		₿ . P10	Sinter Material Grain Growth Kinetics	2 1595 ±09		6 🧃	Solution	 Image: A second s
Mean Powder Diameter	0.12 mm			, us	8	φ =10	Activation Energy	3.1300 +00		7 🖌	Results	1
Sintering Stress	,		output		*	New input parameter	New name	New expression				· · ·
Activation Temperature	900 °C	-	υμιραι		10	Output Parameters Output Parameters Output Parameters					Parameters	
Model	Olevsky (Grain-Size corrected)	-	noronato	r o [12	P1	LOC DEFZ Maximum	5.4474	mm		Calibrated 316L	
Input by	Single Stage		paramete	rs i	13	p⊋ P2	LOC_DEFX Minimum	0.8236	mm			
P Pre-Factor	8.07952411477845 N/mm				14	P⊋ P3	LOC_DEFX 2 Maximum	11.876	mm			
	2	-			15	P4	LOC_DEFY Minimum	2.2963	mm			
	2	-			16	P5	LOC_DEFY 2 Maximum	32.704	mm			
Madal	Arrhanius				*	New output parameter		New expression	6	Paramete	r Set	
Model	Armenius Gianta Stana	-			18	Charts				- rerentete		
Input by	Single Stage											
Pre-Factor	3.02746964404441 MPa-s			x								
P Activation Energy	123966631.068764											
Temperature Exponent	1									T	E	
Grain Size Exponent	3									- 1	Optimization	
Grain Growth Kinetics										1 100	Opumizauori	
Model	Parabolic						nsvs /	ODTI	SLANG	2 🏹	One-Click Optimizati	ion 🗸 🖌
Initial Grain Size	0.006 mm							0111		3 📥	Results	 Image: A second s
Input by	Single Stage											
P Pre-Factor	6.63192815958552									(One-Click Optimizat	tion
P Activation Energy	9201441680.24426	Criteria										
Viscous Moduli												
Model	Riedel	News	Turne			E	-1		Collection		- Frankinska d	~
Shear Moduli density Coefficie	nt 1	- Name	туре			Express	sion		Criterion		Evaluated	expres
Shear Moduli density Exponen	t 2	-	-							_		
Bulk Moduli density Coefficien	+ 1	- 🛛 🕛 Length	Objective abs(30	abs(30.84-	-(LOC_DEFY_2_Maximum-LOC_DEFY_Minimum)			mum)) I	MIN	0.43	2686	
Bulk Moduli density Evenenat	2	-										
buik woduli density exponent	4	No. Madth	Objective	abs(11.2.()	00	DEEV 2 Mavim	um LOC DEEX Minim		ATN	0.14	7202	
viscous Poissons coefficient	0.5		Objective	aus(11.2-(I	LUC_		um-LOC_DEFX_MINIM	um)) I	VIII	0.14	/203	
Anisotropy		_										
Anisotropic Factors	Tabulas Data											

©2023 ANSYS, Inc.

Ansys

ADDITIVE SUITE

Parametric Optimization with optiSLang

OPTISLANG

©2023 ANSYS, Inc.

Ansys

Sensitivity Analysis with optiSLang

OPTISLANG

©2023 ANSYS, Inc.

Insys

Best Design Point (DP 538)

- 3D scanned sintered specimen
- Simulated sintered specimen

Ansys / Optislang

• Motivation

• Simulation Capabilities

• Theory Background

Calibration

- Sintering Simulation
- Distorsion Compensation Analysis
- Verification Sintering <u>Simulation</u> of Distorted Part
- Validation- Sintering <u>Printed</u>
 Distorted Part

Case Study- Initial Sintered Result

Flat Orientation Sintering Simulation (15% scaled model)

LINT ©, Germany

Insys

ADDITIVE SUITE

Tilted Orientation Sintering Simulation (15% scaled model)

\nsys

ADDITIVE SUITE

Capturing Gravity Influence

ADDITIVE SUITE

©2023 ANSYS, Inc.

Ansys

Flat Orientation Distortion Compensation Analysis

ADDITIVE SUITE

Verification – Sintering <u>Simulation</u> of Distorted Part

//nsys

2023 ANSYS, Inc.

Insys

ADDITIVE SUITE

Validation-Sintering Printed Distorted Part (Uncalibrated)

Sintered part

- Using FEA to simulate the sintering process is crucial to design and predict desired dimensions and residual stress.
- Distorsion compensation analysis can be used to create precise initial part dimensions before sintering and avoid the use of supports.
- Material model calibration is crucial due to ingredients difference.

Future work:

- Compare case study calibrated result
- Calibrate additional of Tritone's materials
- Using the new native sintering calibration tool in Ansys Mechanical
- Material calibrations based on advance methods.

Thank you for listening

